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1. Introduction 

The need to analyze steel samples for their chemical composition is important for process 
control.  Most methods currently employed generally require multiple sample preparation steps 
and off-site analysis.  Laser-induced breakdown spectroscopy (LIBS) requires no sample 
preparation, can simultaneously detect all elements, can be configured as a portable system (1–4) 
and can be used for real-time online steel analysis (5–9).  Recently, Benet Laboratories was 
interested in seeing if LIBS could be used to determine slight discrepancies in the composition of 
steel parts, such as trace amounts of carbon.  LIBS analysis of carbon in steel samples typically 
involves using atomic emission lines in the vacuum ultraviolet (VUV) region (10–18).  
Collecting emission in the VUV usually involves using specialized spectrometers and sample 
chambers in order to avoid absorption of the plasma emission due to the O2 Schumann-Runge 
band system (19).  Also, the optics need to transmit light emission below 200 nm.  Benet 
Laboratories provided several steel samples to the U.S. Army Research Laboratory (ARL) to see 
if a simple benchtop LIBS system could be used to detect carbon and sulfur emission in the 230–
1000 nm ultraviolet-visible-near infrared (UV-VIS-NIR) range, in order to avoid using the 
specialized equipment needed to collect emission in the VUV.  We also needed to confirm that 
the samples provided were 4130 steel. 

2. Experimental 

The ARL benchtop LIBS system utilized a 300 mJ laser pulse from a Nd:YAG laser (Big Sky 
Laser, Quantel, CFR 400).  The laser was focused by a convex lens (100 mm) through a pierced 
mirror onto the sample surface, creating a microplasma.  An argon flow was directed across the 
plasma in order to enhance the signal further.  The plasma emission was collected by a parabolic 
mirror and focused onto a seven fiber optic bundle where it was delivered to a seven channel 
charge-coupled device (CCD) spectrometer (Ocean Optics, LIBS2500+).  The gate delay was 
1.25 s with a 1 ms integration time.  We also used a double pulse Nd:YAG laser (Continuum, 
Surelite I-PIV) at 320 mJ per pulse for additional analysis.  The laser pulses (separated by 1 s) 
passed through a flat pierced mirror and were focused by a 100 mm convex lens onto the sample 
surface.  The plasma emission was collected by the lens and redirected by the flat mirror to a 
convex lens (50 mm) that focused the light onto a single 400 µ fiber.  The fiber delivered the 
light to an echelle spectrograph (EMU-65, Catalina Scientific Instruments) with an electron 
multiplying charge-coupled device (EMCCD) (Andor iXon).  The gate delay was 1.5 s with an 
integration time of 50 s.  The echelle provided much higher resolution and dynamic range than 
the seven channel CCD spectrometer.   
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Ten LIBS spectra were collected from each Benet Laboratories sample (no. 1, no. 2, no. 4, no. 5, 
no. 6, no. 8, no. 9, no. 10, no. 11, no. 12, no. 13, no. 14, and two base plate samples) and from 
various National Institute of Standards and Technology (NIST) steel standards, including 4130 
steel, a low alloy steel (1761a), and a stainless steel (C1296) using the single pulse laser system 
and the seven channel spectrometer.  Ten additional spectra of the 1761a steel standard were 
collected using the double pulse system and the higher resolution echelle spectrometer.  Table 1 
lists the minor constituent elements discussed in this report for each steel standard.  For every 
sample (NIST standards and Benet samples) the first spectrum was removed from the data set as 
it was primarily used to clean the surface of any contaminants.  The remaining spectra were used 
to calculate an average LIBS spectrum for each of the samples and standards.   

Table 1.  Percentage of minor constituent elements in NIST steel standards.  

 4130 
(%) 

1761a 
(%) 

C1296 
(%) 

Carbon 0.274 1.05 0.038 
Sulfur 0.014 0.037 0.013 

Chromium 0.91 0.222 27.9 
Titanium — 0.173 0.23 

The numbered samples and the 4130 steel sample are displayed in figure 1.  The spectra are all 
very similar as expected since the majority of the atomic emission lines in the 200–500 nm 
region are due to iron atomic emission.  The largest atomic emission lines from 600–950 nm are 
due to the argon bath gas. 

 

Figure 1.  LIBS spectra (single pulse, CCD spectrometer) of Benet Laboratories samples 1–14 (red) 
and 4130 steel (blue).  Several argon and iron lines saturate the detector. 
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3. Results and Discussion 

We used linear correlation to determine if the Benet Laboratories samples were in fact 4130 
steel.  Each individual numbered sample spectrum and the base plate spectra were correlated 
against each individual spectrum from the NIST steel standards (4130 steel, 1761a, and C1296) 
to determine the r2 value from the Pearson correlation coefficient 

 
  
   22 yyxx

yyxx
r




 . (1) 

The r2 value is used as a measure of the association between two spectra, where r2 = 1 indicates 
that the spectra are identical.  We correlated each of the nine spectra from each sample from 
Benet Laboratories with each of the nine spectra from the three steel standards.  There were a 
total of 81 correlation coefficients calculated for each sample.  The average correlation is 
calculated for each sample and the error is determined for a 95% confidence limit.  The 
correlation for each sample was closest to the 4130 steel and the 1761a steel.  The samples do 
not correlate with C1296 at all.  Table 2 shows the comparison of the correlations between the 
two standards.  Overall, the majority of the samples correlate more closely with the 4130 steel.  
However, the correlation is extremely close for the two standards.  Since the majority of each 
standard consists of iron it is not surprising that the numbered samples closely correlate with 
both standards.  In order to definitively determine the best match, closer inspection of minor 
atomic emission peaks is necessary.  The 1761a alloy contains titanium (0.173%), unlike the 
4130 steel standard.  Prominent titanium atomic emission lines occur at 334.885, 336.099, 
337.262, and 338.325 nm.   

Table 2.  The r2 value for each sample with each steel standard. 

 4130 1761a C1296 
Sample r2 value r2 value r2 value 

1 0.968±0.004 0.955±0.003 0.719±0.005 
2 0.963±0.005 0.949±0.004 0.748±0.006 
4 0.959±0.004 0.946±0.003 0.729±0.004 
5 0.939±0.007 0.938±0.006 0.714±0.006 
6 0.957±0.004 0.951±0.004 0.736±0.005 
8 0.965±0.007 0.953±0.006 0.715±0.004 
9 0.959±0.004 0.952±0.003 0.714±0.005 

10 0.955±0.008 0.945±0.007 0.725±0.005 
11 0.897±0.014 0.895±0.012 0.721±0.006 
12 0.973±0.003 0.963±0.001 0.723±0.004 
13 0.953±0.008 0.946±0.006 0.727±0.005 
14 0.908±0.008 0.918±0.007 0.713±0.005 

Base plate 1 0.779±0.014 0.805±0.013 0.647±0.011 
Base plate 2 0.824±0.011 0.846±0.009 0.668±0.010 



 4

In figure 2a, one can see that the numbered samples and the 4130 steel standard do not have 
prominent titanium lines compared to 1761a.  However, the base plate samples clearly have 
higher titanium emission lines, thus higher titanium content.  At 335.808 and 336.778 nm atomic 
emission lines due to chromium are much more prevalent in the numbered samples and the 4130 
steel compared to the 1761a standard and the base plate.  The chromium content in 4130 steel 
and the 1761a standard is 0.91% and 0.222%, respectively.  Again, the more prominent 
chromium peaks indicate that the numbered samples are 4130 steel.  Figure 2b shows the most 
prominent chromium lines at 425.43 and 427.476 nm; the numbered samples and the 4130 steel 
have the highest emission due to chromium.  The two base plate samples have higher chromium 
emission than the 1761a standard.  From the correlations and the peak analysis, it is evident that 
the numbered samples are 4130 steel.  However, the two base plate samples have higher titanium 
content and lower chromium content than 4130 steel and do not match well with the 1761a or 
C1296 steel.  It should be noted that these are results from a limited study.  Further investigation 
could involve selecting the key minor element emission peaks (not iron peaks) in 4130 steel.  
These same peaks would be selected in a variety of steel standards (more than used in this study) 
and these emission intensities would be used as inputs for a variety of chemometric techniques; 
principal components analysis, partial least squares, and partial least squares discriminant 
analysis, etc.  By using more steel standards and minor emission lines particular to 4130 steel in 
the model, the matching of unknown samples to 4130 steel would be more robust. 

The spectrometer wavelength ranges available at ARL cover from 200–1000 nm.  In this range 
the most prominent carbon line is at 247.8 nm.  Other lines observed in organic samples are at 
833.515, 909.483, and 940.573 nm.  Figure 3 displays the LIBS spectra from the 4130 steel, the 
1761a standard (has the highest % carbon content) and a residue of an organic material as a 
carbon reference.  There was no carbon atomic emission at 833.515, 909.483, and 940.573 nm in 
any of the numbered samples or the standards as shown in figure 3.  Unfortunately, an iron 
atomic line emits ~247.8 nm, interfering with any carbon emission that may be present.  An 
attempt at generating a calibration line based on the intensity at 247.8 nm was still made using 
several carbon containing metal standards despite the potential interference.  However, there was 
no linear correlation between the peak intensity and the known carbon concentration, indicating 
that the majority of the emission line in the spectra is due to the iron.  
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Figures 2a, 2b.  LIBS spectra of Benet Laboratories samples and steel standards (a) region of strongest 

titanium atomic emission and (b) region of strongest chromium atomic emission. 
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Figure 3.  LIBS spectra of steel standards and organic residue reference in regions of carbon atomic 
emission. 
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We collected more LIBS spectra using the double pulse laser and the echelle spectrograph to 
improve the resolution.  Figure 4 displays the spectra of the 1761a standard and the organic 
residue.  We observe that the two peaks at ~248 nm do not overlap using the higher resolution 
spectrograph, further supporting the conclusion that the line in the steel standard is due to iron 
and not carbon.  If any carbon emission is present then it is convoluted with the more prominent 
iron emission, making calibration all but impossible. 

 

 

Figure 4.  LIBS spectra from the high resolution echelle spectrograph. 

The prominent sulfur emission lines in the ranges covered are observed at 869.47, 921.29, 
922.81, and 923.75 nm.  We collected LIBS spectra of sulfur powder using the single pulse LIBS 
system and the seven channel spectrometer to use as a reference to compare to the steel samples.  
In figure 5, we show the spectra of the 4130 steel and the sulfur under argon.  No sulfur emission 
is observed in the 4130 steel or any of the other numbered samples or standards. 
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Figure 5.  LIBS spectra of 4130 steel and sulfur powder. 

4. Conclusions 

As mentioned previously, the published literature for carbon and sulfur measurements in steel is 
conducted in the VUV (10, 11, 13, 15–18, 20).  The advantage of using carbon and sulfur atomic 
emission peaks in this region is that the most prominent emission lines for carbon and sulfur are 
at 193.09 nm and 180.73 nm, respectively, compared to the lines used in the above study.  They 
are also free of interference from the iron atomic emission lines, the most prevalent element in 
the steel samples.  Successful calibration curves have been made in steel samples using these 
lines for sulfur and steel (10, 13, 17).  The disadvantage of using these lines is air absorption in 
this region due to the O2 Schumann-Runge band system.  The light collection pathway and the 
spectrometers must be purged with inert gases (such as nitrogen or argon) in order to obtain 
usable signals.  Optics and gratings capable of transmitting and dispersing VUV light must also 
be acquired.  We were unable to observe any carbon or sulfur emission in any of the steel 
samples in the UV-VIS-NIR; however other trace elements such as titanium and chromium were 
detected.  In order to detect carbon or sulfur in steel, LIBS spectra should be collected in the 
VUV emission range, which requires specialized equipment and a more complex experimental 
setup.   
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